
18.100A Practice problems for Chapter 1-22,24,25

The final exam will take place on May 22nd, Tuesday 1:30-4:30.

As an open book exam, during the exam you can see
1. the textbook : Introduction to Real Analysis by A. Mattuck,
2. notes, copies, and scratch papers (at most 500 sheets of paper).

However, the following are NOT allowed to use
1. electronic devices.
2. the other books except the textbook.

When you write the poofs of problems, you can cite Theorems, Properties,
and examples with proofs in the textbook Chapter 1-22,24,25. Moreover, a
sheet of facts will be given and you can cite them.

However, you can not use exercises and problems in the textbook as well
as problem sets, practice problems, and their solutions. If you have copies
of the solutions and want to use them, please rewrite the proofs.

Review: 5 in pset 4, 2-10 in pset 5, 5-11 in pset 6, 1-5 in pset 7.

Problem 1. Determine whether the following statements are true or false.
If false then provide a counterexample. You don’t need to verify why it is a
counterexample.

(1) Suppose f(x) is continuous on an interval I. Then, f(x) is bounded
on I.

(2) Suppose lim
x→0+

f(x) = +∞. Then, f(x) is not continuous on (0, 1).

(3) Suppose f(x) is continuous on an interval I. Then, f(x) is uniformly
continuous on I.

(4) Suppose f(x) is continuous on [0, 1] and f(0) < 0, f(1) > 0. Then,
f(x) has a unique zero in [0, 1].

(5) Suppose f(x) is continuous and bounded on [0,+∞). Then, f(x)
has the maximum on [0,+∞).

(6) Suppose f(x) is infinitely many times differentiable at 0. Then, the
Taylor series centered at 0 converges to f(x) in a neighorhood of 0.

(7) Suppose f(x) is a polynomial. Then, f(x) is the same to its Taylor
series.

(8) Suppose
∫ 1−

0+ f(x)dx converges. Then,
∫ 1−

0+ f2(x)dx converges.
(9) Suppose f(x) and g(x) are integrable on I = [a, b]. Then, f(x)g(x)

is integrable on I.
(10) Suppose each fn(x) is bounded on I = [a, b] and fn(x) converges to

f(x). Then, f(x) is bounded on I.
(11) Let In are open intervals. Then, ∩∞n=1In is the empty set or an open

interval.
(12) An open set U is not a union of closed sets.
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Proof for (1). F: Counterexample f(x) = x and I = R. �

Proof for (2). F: Counterexample f(x) = 1/x. �

Proof for (3). F: Counterexample f(x) = x2 and I = R. �

Proof for (4). F: Counterexample f(x) = (x− 1
2)(x− 1

3)(x− 1
4). �

Proof for (5). F: Counterexample f(x) = 1− 1
x+1 . �

Proof for (6). F: Counterexample f(x) = e−
1
x for x > 0 and f(x) = 0 for

x ≤ 0. �

Proof for (7). T �

Proof for (8). F: Counterexample f(x) = 1√
x
. �

Proof for (9). T �

Proof for (10). F: Counterexample, a = 0, b = 1, fn(0) = 0, fn(x) = n for
0 < x < 1

n , and fn(x) = 1
x for x ≥ 1

n . Then, each fn is bounded because
we have0 ≤ fn(x) ≤ n. However, limn→∞ fn(x) = f(x) where f(0) = 0 and
f(x) = 1/x for x > 0. �

Proof for (11). F: Counterexample In = (− 1
n ,

1
n). Then, ∩∞n=1In = {0} is a

compact set. �

Proof for (12). F: Counterexample (−1, 1) = ∪|x|<1{x}. Namely, (−1, 1) is
an open interval. However, {x} are closed sets. �

1. Taylor series

Problem 2. Find the third order Taylor polynomial T3(x) of f(x) = ex sinx
at 0, and show that |f(x)− T3(x)| < .02 for |x| < .5.

(Fact :
√
e < 1.75.)

Proof. Compute

f ′ = ex(sinx+ cosx), f ′′ = 2ex cosx,

f (3) = 2ex(− sinx+ cosx), f (4) = −4ex sinx.

Therefore, if |c| < .5 then |f (4)(c)| = 4ec| sin c| ≤ 4ec < 7. By the remainder
theorem, for each x there exists |c| ≤ |x| < .5 such that

|f(x)− T3(x)| = |R3(x)| = |f
(4)(c)|
4!

|c|4 < 7

24 · 16
<

1

50
.

�

Problem 3. Find the Taylor series of f(x) = x3 + 2x2 − 7 at 1.
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Proof. Compute

f ′(x) = 3x2 + 4x, f ′′(x) = 6x+ 4, f (3)(x) = 6, f (4)(x) = 0.

Hence,

f(1) = −4, f ′(1) = 7, f ′′(1) = 10, f (3)(1) = 6, f (n)(1) = 0,

for n ≥ 4. Thus, Taylor series at 1 is

T (x) = −4 + 7(x− 1) + 5(x− 1)2 + (x− 1)3.

�

2. Continuity

Prove the following statements in this section.

Problem 4. f(x, y) is defined by f(x, y) =
√
x2 + y2 cos( 1

x2+y2
) for (x, y) 6=

(0, 0) and f(0, 0) = 0. Then, f(x, y) is continuous at (0, 0).

Proof. Given ε > 0, if ‖(x, y)‖ < ε and (x, y) 6= (0, 0) then

|f(x, y)− f(0, 0)| =
√
x2 + y2| cos(x2 + y2)−1| ≤

√
x2 + y2 = ‖(x, y)‖ < ε,

namely

lim
‖(x,y)‖→0

f(x, y) = f(0, 0).

Hence, the theorem 24.5A gives the desired result. �

Problem 5. f(x, y) is defined by f(x, y) = xy(x2 +y2)−
2
3 for (x, y) 6= (0, 0)

and f(0, 0) = 0. Then, f(x, y) is continuous at (0, 0).

Hint: 2xy ≤ x2 + y2.

Proof. Given ε > 0, if ‖(x, y)‖ < (2ε)
3
2 and (x, y) 6= (0, 0) then

|f(x, y)− f(0, 0)| = |xy|
(x2 + y2)

2
3

≤ x2 + y2

2(x2 + y2)
2
3

=
1

2
(x2 + y2)

1
3 =

1

2
‖(x, y)‖

2
3 < ε

namely

lim
‖(x,y)‖→0

f(x, y) = f(0, 0).

Hence, the theorem 24.5A gives the desired result. �

Problem 6. f(x, y) is defined by f(x, y) = x sin
( 1

x2 + y2
)

for (x, y) 6= (0, 0)

and f(0, 0) = 0. Then, f(x, y) is continuous at (0, 0).
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Proof. Given ε > 0, if ‖(x, y)‖ < ε and (x, y) 6= (0, 0) then

|f(x, y)− f(0, 0)| = |x|| sin(x2 + y2)−1| ≤ |x| ≤
√
x2 + y2 = ‖(x, y)‖ < ε,

namely

lim
‖(x,y)‖→0

f(x, y) = f(0, 0).

Hence, the theorem 24.5A gives the desired result. �

Problem 7. f(x, y) is defined by f(x, y) =
√
x2 + y2 cos

(
1/y
)

for y 6= 0
and f(x, 0) = 0. Then, f(x, y) is not continuous.

Proof. We have

f(1,
1

2nπ
) =

√
1 + (2nπ)−2 cos(2nπ) =

√
1 + (2nπ)−2 → 1,

as n→ +∞. Since limn→∞
1

2nπ = 0, if f is continuous at (1, 0) then we have

0 = f(1, 0) = lim
n→∞

f(1,
1

2nπ
) = 1,

by the theorem 24.5A. Contradiction. �

Problem 8. f(x) = x sin(1/x) is uniformly continuous on (0,+∞).

Proof. We define g(x) = x sin(1/x) for x > 0 and g(0) = 0. Then, given
ε > 0 if x ∈ [0, ε)

|g(x)− g(0)| = |x|| sin(1/x)| ≤ |x| < ε,

namely g(x) is continuous at 0. Moreover, g(x) = x sin(1/x) is continuous
at x > 0 by the theorem 11.4C, example 11.1B, and theorem 11.4D. There-
fore, g(x) is continuous on the compact interval [0, 2]. So, it is uniformly
continuous on [0, 2] by the theorem 13.5. Hence, given ε > 0, there exists
δ1 > 0 such that |g(x)− g(y)| < ε if |x− y| < δ1 and x, y ∈ [0, 2].

Next, for x ≥ 1 we have

|g′(x)| = | sin(1/x)− x−1 cos(1/x)|
≤ | sin(1/x)|+ |x|−1| cos(1/x)| ≤ 1 + |x|−1 ≤ 2.

Hence, the fundamental theorem of calculus shows

|g(x)− g(x+ h)| = |
∫ x+h

x
g′(t)dt| ≤

∫ x+h

x
|g′(t)|dt ≤

∫ x+h

x
2dt = 2h,

for x ≥ 1 and h > 0. Thus, given ε > 0 if |x − y| < ε/2 = δ2 and x, y ≥ 1
then we have |g(x)− g(y)| < ε.

Now, given ε > 0 we set δ = min{δ1, δ2, 1
10}. Then, if |x − y| < δ and

x, y > 0 then at least one of x, y ∈ (0, 2] or x, y ≥ 1 holds. In the first case
x, y ∈ (0, 2] ⊂ [0, 2], the condition |x − y| < δ ≤ δ1 implies |f(x) − f(y)| =
|g(x)− g(y)| < ε. In the second case x, y ≥ 1, the condition |x− y| < δ ≤ δ2
implies |f(x)−f(y)| = |g(x)−g(y)| < ε. Hence, f(x) is uniformly continuous
on (0,+∞).

�
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Problem 9. f(x) = x2 sin(1/x) is uniformly continuous on [1,+∞).

Sorry. This problem is not well-designed and too difficult.

Proof. Compute

f ′(x) = 2x sin(1/x)− cos(1/x) =
2 sin(1/x)

1/x
− cos(1/x).

Thus,

lim
x→∞

f ′(x) = lim
x→∞

2 sin(1/x)

1/x
− cos(1/x) = lim

t→0+

2 sin t

t
− cos t = 2− 1 = 1.

Also, we have |f ′(1)| = |2 sin 1 − cos 1| ≤ 3. Since limx→∞ f
′(x) = 1, there

exists M > 1 such that |f ′(x) − 1| < 1 if x > M . Namely, |f ′(x)| <
|f ′(x)− 1|+ 1 < 2 if x > M .

Since |f ′(x)| is continuous for x > 0, |f ′(x)| attains its maximum N on
the compact set [1,M ]. Then, N = max1≤x≤M |f ′(x)| ≥ |f ′(1)| = 3 > 2 ≥
|f ′(y)| for y > M . So, N is the maximum of |f ′(x)| on [1,+∞).

Thus, given ε > 0 if |x− y| < ε
N and y ≥ x ≥ 1 then by the fundamental

theorem of calculus

|f(x)− f(y)| = |
∫ y

x
f ′(t)dt| ≤

∫ y

x
|f ′(t)|dt ≤

∫ y

x
Ndt < ε,

holds. Therefore, f(x) is uniformly continuous on [1,+∞). �

Problem 10. Assume that g(x) is continuous on R and g(0) = 1. Then,
f(x) = g(x) cos(1/x) is not uniformly continuous on (0, 1].

Hint: Theorem 23. (This theorem was an assignment.)

Proof. Since g(x) is continuous on R and g(0) = 1, there exists some δ > 0
such that |g(x)− 1| < 1

10 for |x| < δ.
We define xn = 1/(nπ). Then, {xn} is a Cauchy sequence. Assume

that f(x) is uniformly continuous on (0, 1]. Then, {f(xn)} is also a Cauchy
sequence. However, if 1

nπ < δ then the following hold

f(x2n) = g(x2n) cos(2nπ) = g(x2n) ≥ 9

10
,

f(x2n+1) = g(x2n+1) cos((2n+ 1)π) = −g(x2n+1) ≤ −
9

10
.

Namely, f(x2n)− f(x2n+1) ≥ 9
5 . Contradiction. �
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3. Improper integral

Problem 11. Test the improper integral for convergence or divergence.∫ ∞
0

x√
1 + x4

dx.

Proof. We define g(x) = x√
x4

= 1
x . Then,

f(x)

g(x)
=

x2√
1 + x4

=
1√

x−4 + 1
→ 1

as x → ∞. In addition,
∫∞
1

1
xdx diverges. Hence, by the asymptotic com-

parison test,
∫∞
1 f(x) also diverges. So,

∫∞
0 f(x) diverges. �

Problem 12. Test the improper integral for convergence or divergence.∫ ∞
e

x

(lnx)2
√

1 + x4
dx.

Proof. We define g(x) = x

(lnx)2
√
x4

= 1
x(lnx)2

. Then,

f(x)

g(x)
=

x2√
1 + x4

=
1√

x−4 + 1
→ 1

as x→∞. In addition,

lim
t→∞

∫ t

e
g(x)dx = lim

t→∞

∫ t

e

1

x(lnx)
dx

= lim
t→∞

∫ ln t

1

1

u2
du = lim

t→∞
− 1

ln t
+ 1 = 1.

Hence, by the asymptotic comparison test,
∫∞
e f(x) also converges. �

Problem 13. Assume that
∫ b
a f

2(x)dx and
∫ b
a g

2(x)dx converges. Prove
that the improper integral converges.∫ b

a
f(x)g(x)dx.

Proof. Since
∫ b
a

1
2(f2(x) + g2(x))dx converges, by |f(x)g(x)| ≤ 1

2(f2(x) +

g2(x)) and the comparison test,
∫ b
a |f(x)g(x)|dx converges. Namely,

∫ b
a f(x)g(x)dx

absolutely converges, and so converges. �

Problem 14. Assume that
∫ 1
0 f

2(x)dx converges. Prove that the improper
integral converges. ∫ 1

0
f(x)x−

1
4dx.

Hint: Use the result of the previous problem.

Proof. We set g(x) = x−
1
4 . Then,

∫ 1
0 g

2(x)dx =
∫ 1
0

1√
x
dx converges. Hence,

by the proof of the previous problem,
∫ 1
0 f(x)x−

1
4 converges. �
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4. Uniform convergence

Prove the following statements in this section.

Problem 15. f(x) =

∞∑
n=1

sinnx

n2(n+ 1)
is continuous on R.

Proof. We set un(x) = sinnx
n2(n+1)

. Then, |un(x)| ≤ 1
n2(n+1)

≤ 1
n3 and thus∑

un uniformly converges by the theorem 22.2. Since un are continuous,
f(x) is continuous by the theorem 22.3. �

Problem 16. f(x) =
∞∑
n=1

sinnx

n2(n+ 1)
is uniformly continuous on R.

Hint: First, show that |f ′(x)| is bounded.

Proof. We set un(x) = sinnx
n2(n+1)

. Then, u′n(x) = cosnx
n(n+1) . Hence, |u′n(x)| ≤

1
n(n+1) . Thus, for each x, we have

m∑
n=1

|u′n(x)| ≤
m∑
n=1

1

n(n+ 1)
≤
∞∑
n=1

1

n(n+ 1)
= M,

for some constant M . Actually,
∞∑
n=1

1

n(n+ 1)
=
∞∑
n=1

1

n
− 1

n+ 1
= (1− 1

2
) + (

1

2
− 1

3
) + · · · = 1.

Therefore,
∑
u′n uniformly converges by the theorem 22.2. Since u′n are

continuous, by the theorem 22.5, f(x) is differentiable and
∑
u′n converges

to f ′(x).

Next, for each fixed x, we checked
∑
|u′n(x)| ≤ M . Hence, −|u′n(x)| ≤

u′n(x) ≤ |u′n(x)| yields

−M ≤ −
m∑
n=1

|u′n(x)| ≤
m∑
n=1

u′n(x) ≤
m∑
n=1

|u′n(x)| ≤M.

Thus, the limit location theorem shows |f ′(x)| ≤M(= 1). Thus, given ε > 0
if |x− y| ≤ ε

M with y ≥ x then

|f(x)− f(y)| = |
∫ y

x
f ′(t)dt| ≤

∫ y

x
Mdy < ε.

namely f(x) is uniformly continuous. �

Problem 17. f(x) =
∞∑
n=1

sinnx

n2(x2 + 1)
attains its maximum on R.

Hint: First, show that lim
|x|→+∞

f(x) = 0.
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Proof. We set un(x) = sinnx
n2(x2+1)

. Then, |un(x)| ≤ 1
n2 and thus

∑
un uni-

formly converges by the theorem 22.2. Since un are continuous, f(x) is
continuous by the theorem 22.3.

Next, we define
∑ 1

n2 = L. Then,

|
n∑
k=1

uk(x)| ≤
n∑
k=1

|uk(x)| =
n∑
k=1

| sin kx|
k2(x2 + 1)

≤ 1

x2 + 1

n∑
k=1

1

k2
≤ L

x2 + 1
.

Hence, passing n to +∞ yields

|f(x)| ≤ L(x2 + 1)−1.(1)

which means f(x)→ 0 as |x| → +∞.

Now, we can observe f(0) =
∑
un(0) =

∑
0 = 0. Thus, if f(x) ≤ 0 for all

x ∈ R then maxR f(x) = 0. Hence, we may assume that there exists a point
x0 ∈ R such that f(x0) > 0. Then, by (1) there exists M > 0 such that
|f(x)| < f(x0) for all x > M . On the other hand, the continuous function
f(x) attains its maximum on the compact interval [−M,M ]. Namely, there
exists x1 ∈ [−M,M ] such that f(x) ≤ f(x1) for all x ∈ [−M,M ]. Then,
f(x1) ≥ f(x0) > |f(x)| for |x| > M implies that f(x1) is the maximum on
f(x) on R. �

5. Analysis in R2

Problem 18. Assume that a continuous function f(x, y) satisfies

f(r, q) = r − q

for all r, q ∈ Q. Prove that f(x, y) = x− y holds for all (x, y) ∈ R2.

Proof. Given x ∈ R, we can choose a sequence of rational numbers {rn}
converging to x by the theorem 25. Then, given q ∈ Q, we have lim(rn, q) =
(x, q). Thus, the theorem 24.5B yields

x− q = lim(rn − q) = lim f(rn, q) = f(x, q).

Next, given y ∈ R, we choose a sequence of rational numbers {qn} converging
to y. Thus,

x− y = lim(x− qn) = lim f(x, qn) = f(x, y).

�

Problem 19. Assume that a positive continuous function f(x, y) satisfies
lim

‖(x,y)‖→+∞
f(x, y) = 0. Prove that f(x, y) attains its maximum, while it does

not have its minimum.
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Proof. Let us denote f(0, 0) by c. Then, c > 0 = lim
‖(x,y)‖→+∞

f(x, y) im-

plies that there exists some constant R > 0 such that f(x, y) < c holds if
‖(x, y)‖ > R.

Next, we define a bounded set K = {(x, y) : ‖(x, y)‖ ≤ R}. Since

‖(x, y)‖ =
√
x2 + y2 is a continuous function on R2, the set K is closed

by the theorem 25.1B. Hence, the theorem 25.2 implies that K is a compact
set. Hence, by the theorem 24.7B, the continuous function f(x, y) attains
its maximum f(x̄, ȳ) on K. In addition, f(x̄, ȳ) ≥ f(0, 0) > f(x, y) for
(x, y) 6∈ K. Namely, f(x̄, ȳ) is the maximum of f on R2.

Assume that f attains its minimum f(x̃, ỹ). Since

f(x̃, ỹ) > 0 = lim
‖(x,y)‖→+∞

f(x, y),

there exists a point (x̃′, ỹ′) such that f(x̃, ỹ) > f(x̃′, ỹ′). Contradiction. �

Problem 20. f(x, y) =
xy

x2 + y2 + 1
is uniformly continuous on R2.

Note: It would be a bit challenging to prove the statement above.

Proof. Given x ∈ R, we define a differentiable function gx(y) = xy
x2+y2+1

.

Then,

|g′x(y)| =
∣∣∣ x

x2 + y2 + 1
− 2xy2

(x2 + y2 + 1)2

∣∣∣ =
∣∣∣x(x2 − y2 + 1)

(x2 + y2 + 1)2

∣∣∣
≤ |x|
x2 + y2 + 1

≤ |x|
x2 + 1

≤ 1

2
.

Similarly given y ∈ R, we define a differentiable function hy(x) = xy
x2+y2+1

.

Then, |h′y(x)| ≤ 1
2 .

Given ε > 0, if ‖(x1, y1)− (x2, y2)‖ < ε then we have

ε >
√

(x1 − x2)2 + (y1 − y2)2 ≥ max{|x1 − x2|, |y1 − y2|}.
Then, the FTC yields

|f(x1, y1)− f(x2, y1)| = |hy1(x1)− hy1(x2)| =
∣∣∣ ∫ x2

x1

h′y1(t)dt
∣∣∣.

Hence,

|f(x1, y1)− f(x2, y1)| ≤
∫ max{x1,x2}

min{x1,x2}
|h′y1(t)|dt

≤
∫ max{x1,x2}

min{x1,x2}

1

2
dt =

|x1 − x2|
2

<
ε

2
.

In the same manner, we have |f(x2, y1)− f(x2, y2)| < ε
2 . Hence,

|f(x1, y1)− f(x2, y2)| ≤ |f(x1, y1)− f(x2, y1)|+ |f(x2, y1)− f(x2, y2)| < ε.
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Therefore, f(x, y) is uniformly continuous. �

Theorem 21. Assume that f(x, y) is uniformly continuous on S ⊂ R2,
and {(an, bn)} is a Cauchy sequence in S. Then, {f(an, bn)} is a Cauchy
sequence.

Proof. Given ε > 0, there exists δ > 0 such that |f(x1, y1)− f(x2, y2)| < ε if
‖(x1, y1)− (x2, y2)‖ < δ. Since {(an, bn)} is a Cauchy sequences, there exists
N such that ‖(an, bn)− (am, bm)‖ < δ if n,m ≥ N . Hence,

|f(an, bn)− f(am, bm)| < ε

holds for n,m ≥ N . Thus, {f(an, bn)} is a Cauchy sequence. �

Theorem 22. Let S = {(x, y) : x2 + 4y2 ≤ 9, x ≥ 1} and f(x, y) is contin-
uous on S. Show that f is bounded on S.

Proof. First of all, if (x, y) ∈ S then ‖(x, y)‖ =
√
x2 + y2 ≤

√
x2 + 4y2 ≤√

9 = 3. Namely, S is bounded.
Next, we consider the continuous functions g(x, y) = x2+4y2 and h(x, y) =

x. Then, the theorem 25.1B implies that G = {(x, y) : x2 + 4y2 ≤ 9 and
H = {(x, y) : x ≥ 1} are closed. Hence, by the theorem 25.1A S = G∩H is
closed. Thus, by the the theorem 25.2 and the theorem 24.7A S is compact
and thus f is bonded on S. �

6. Theorems

The following theorems are not given in the textbook, but you can cite
during the final.

Theorem 23 (Pset 5, problem 5-(a)). Assume f(x) is uniformly continuous
on I, and {an} is a Cauchy sequence in I. Then, {f(an)} is a Cauchy
sequence.

Theorem 24. sinx and cosx are continuous on R. Moreover, they has
continuous derivatives (sinx)′ = cosx and (cosx)′ = − sinx, respectively.

Theorem 25. Given two real numbers x < y, there exists a rational number
r such that x < r < y. Moreover, given real number x, there exists a sequence
{rn} of rational numbers such that lim rn = x.


